Association of PSMA PET Results at Biochemical Recurrence with Metastasis Free Survival by Conventional Imaging in Patients with Locally Advanced or **High-risk Localized Prostate Cancer Initially Treated with Radical Prostatectomy: A Retrospective Multicenter Study**

Jesus Juarez Casillas,^{1,2*} Thomas A. Hope,³ Jeremie Calais,² Fei Jiang,⁴ Wolfgang P. Fendler,⁵ Abuzar Moradi Tuchayi,² Vishnu Murthy,⁶ Matthias Eiber,⁷ Ken Herrmann,⁵ Madeleine J Karpinski,⁵ Lela Theus,⁸ Andrew T. Nguyen,⁸ Luisa Willner,⁷ Türkay Hekimsoy,⁷ Ariel B. Bourla,⁹ Sharon McCarthy,⁹ Branko Milandinovic,¹⁰ Megan M Price,⁹ Alexander Kretschmer,¹¹ Jose Zamalloa¹²

¹UCLA Radiation Oncology, Los Angeles, CA, USA; ²Ahmanson Translational Theranostics Division, University of California, Los Angeles, CA, USA; ³Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; ⁴University of California, San Francisco, CA, USA; ⁵Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany; ⁶Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; ⁷Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany; ⁸Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; ⁹Johnson & Johnson, Raritan, NJ, USA; ¹⁰Johnson & Johnson, San Diego, CA, USA; ¹¹Johnson & Johnson, Neuss, Germany; ¹²Johnson & Johnson, Lawrence, NJ, USA

Key Takeaway

Incorporating PSMA PET-CT results at time of BCR may enable more precise and effective treatment strategies

Conclusions

Patients with LAHR PCa who have PSMA PET+ lesions at BCR following RP experience an MFS period three times shorter than patients without PSMA **PET+ lesions at BCR**

 A longer follow-up is required to better evaluate associations with overall survival in this patient population

 Further analyses with a larger patient population across institutions in the
United States and Europe are ongoing to increase the robustness of these MFS rate estimates

Please scan QR code Poster

https://www.congresshub.com/Oncology/GU2025/Apalutamide/Casillas

Copies of this presentation obtained through Quick Response (QR) Codes are for personal use only and may not be reproduced without permission from ASCO[®] or the author of this

Correspondence: Jesus Juarez Casillas at jjuarez@mednet.ucla.edu ₩ @JesusJ_MD

*Presenting author

Introduction

- Locally advanced high-risk prostate cancer (LAHR PCa) comprises 10%–15% of new prostate cancer diagnoses in the U.S. and carries a higher risk of biochemical recurrence (BCR), reaching 60% after definitive treatment, compared to low-risk disease¹
- Conventional imaging, including computed tomography (CT), magnetic resonance imaging (MRI), and single-photon bone scans, often fails to detect disease sites at lower PSA levels during BCR²
- Prostate-specific membrane antigen (PSMA) positron emission tomography-computed tomography (PET-CT) is used to stage PCa at BCR and has a higher sensitivity than conventional imaging (i.e. CT and bone scan)^{3,4}
- There is a significant lack of evidence on how PSMA PET findings affect treatment decisions,³ including strategies such as radiation, androgen deprivation therapy, or systemic therapies, and their timing; as well as the resulting clinical outcomes in patients with conventional imaging LAHR PCa experiencing BCR after radical prostatectomy (RP)

Objective

• We investigated the association between PSMA PET-CT results and metastasis free survival (MFS) by conventional imaging in LAHR PCa patients with BCR who had undergone RP

Results

- 433 LAHR RP patients with mCRPC who had received PSMA PET-CT at BCR were included
- Of 433 patients, 157 were PSMA PET+
- Overall median follow-up time was 47.3 months (interquartile range [IQR]: 21.2–72.8)
- MFS was significantly shorter for PSMA PET+ versus PSMA PET- patients by conventional imaging (p=0.006; HR: 2.39, 95% confidence interval [CI]: 1.3–4.5; **Figure 1**)
- The difference in MFS remained significant after propensity score matching (p=0.012; HR: 3.0, 95% CI: 1.2–7.5; Figure 2)

Table 1. Detient abaractoristic

able I: Patient characteristics				
	PSMA PET+ (n=157)	PSMA PET- (n=276)	Cohen's D	p-value
Age , Mean (SD), y	63.1 (7.51)	64.3 (7.10)	0.169	0.114
Race, n (%)				0.294
White	117 (81.2%)	192 (81.0%)		
Black or African American	3 (2.1%)	12 (5.1%)		
Other	24 (16.7%)	33 (13.9%)		
ECOG status				0.544
0	95	149		
1-2	24	31		
Baseline T stage				0.81
T1	12	31		
T2	34	75		
T3-T4	30	59		
Gleason score ^a				0.396
3+3, 3+4	9 (6.4%)	13 (5.0%)		
4+3	7 (5.0%)	25 (9.6%)		
3+5, 4+4, 5+3	68 (48.2%)	123 (47.3%)		
4+5, 5+4, 5+5	57 (40.4%)	99 (38.1%)		
PSA at BCR, median (range)	1.35 (0.2–217.2)	0.51 (0.2–19.9)	0.332	0.013
Time to RP, median (range), mo	2.15 (0–45.7)	2.37 (0-88.9)	0.023	0.81
Imaging within 4 weeks of PSMA PET, (n%)				0.317
No imaging within 4 weeks	146 (93.0%)	258 (93.5%)		
CT, Bone scan	5 (3.2%)	13 (4.7%)		
Other	6 (3.8%)	5 (1.8%)		

^aGleason score reported is the highest value between either biopsy or RP. BCR, biochemical recurrence; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; mo, month; PSA, prostate specific antigen; PSMA, prostate-specific membrane Antigen; PET, positron emission tomography; RP, radical prostatectomy; y, year.

References

- Shore ND et al. *Prostate Cancer Prostatic Dis*. 2024;27(2):192-201.
- Mena E et al. *World J Urol*. 2021 Mar;39(3):687-699.
- . Meijer D et al. *Eur Urol Oncol*. 2022;5(2):146-52.
- 4. Hoffman A et al. *Cancers (Basel)*. 2023;29;15(13):3402.

Methods

- who experienced BCR following RP and received a PSMA PET-CT scan were January 2016 and January 2024

- MFS was estimated by conventional imaging (CT and bone scan)
- Time-to-event analysis was performed between patients with PSMA PET positive imaging results on MFS
- A 1:1 propensity score matching was used to control confounding factors. The a logistic regression.

Number at risk

• PSMA PET+ status was defined as having evidence of a distant lesion by PSMA PET Treatment changes were recorded from the time of BCR and up to 60 days post-BCR

(PSMA PET+) and PSMA PET negative (PSMA PET-) lesions to estimate effect of

propensity score is defined as the probability of being assigned to PSMA PET+ group conditioning on the PSA and treatment change at BCR. This probability is estimated by

