Arun Azad¹, Ding-Wei Ye², Hiroji Uemura³, Amitabha Bhaumik⁴, Michael Eisbacher⁵, Anildeep Singh⁶, Sharon McCarthy⁷, Suneel Mundle⁷, Kim N. Chi⁸, Neeraj Agarwal⁹

1. Peter MacCallum Cancer Centre, Melbourne, Australia; 2. Fudan University Shanghai Cancer Center, Shanghai, China; 3. Yokohama City University Medical Center, Kanagawa, Japan; 4. Johnson & Johnson Research and Development, Titusville, NJ; 5. Johnson & Johnson - Australia and New Zealand, Macquarie Park, Australia; 6. Johnson & Johnson, Raritan, NJ; 7. Johnson & Johnson Research and Development, Raritan, NJ; 8. University of British Columbia, BC Cancer-Vancouver Center, Vancouver, BC; 9. Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT Click anywhere to view

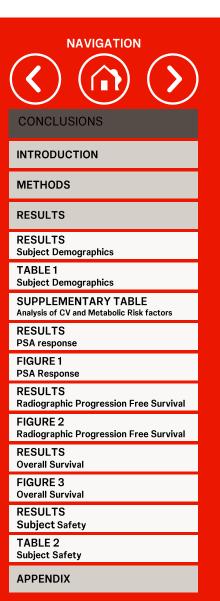
https://www.congresshub.com/Oncology/ GU2025/Azad-Efficacy

this interactive poster

Copies of this presentation obtained through Quick Response (QR) Codes are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

CONCLUSIONS


A large majority (~70%) of patients enrolled in TITAN reflected a patient population with a considerable CV and metabolic risk profile and were receiving concomitant meds for these conditions, in line with that commonly seen in the real world

Addition of apalutamide to ADT resulted in a significant improvement in both rPFS and OS and achievement of PSA90 or PSA<0.2ng/ml regardless of prior history of CV and metabolic baseline risk factors or use of associated concomitant medications for these conditions

TEAE's of any grade and Gr/3/4 were similar between subjects with and without CV and metabolic risk.

>	Incidence of falls, IHD and Ischemic CV disorders and TEAE's associated with long term use of ADT were
ン	relatively infrequent, although rates were slightly higher in patients with history of CV and metabolic risk
	factors in both the APA and PBO arms, possibly due to the older age of this cohort

NAVIGATION

CONCLUSIONS

METHODS

RESULTS

RESULTS Subject Demographics

TABLE 1

RESULTS

PSA response

PSA Response RESULTS

FIGURE 2

RESULTS Overall Survival

Overall Survival

Subject Safety

RESULTS

TABLE 2 Subject Safety

APPENDIX

INTRODUCTION

Subject Demographics

SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors

Radiographic Progression Free Survival

Radiographic Progression Free Survival

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

INTRODUCTION

- TITAN, a phase III, randomized, placebo- controlled study, demonstrated improved radiographic progression-free survival (rPFS) and Overall Survival (OS) with apalutamide (APA) added to ADT versus ADT + placebo (PBO) in a patient population with mCSPC.^{1, 2, 3}
- Patients with cardiovascular issues (CV), such as myocardial infarction, symptomatic congestive heart failure, or thromboembolic events occurring ≤6 months of randomization were excluded from the TITAN trial. However, patients with events occurring > 6 months prior or non-excluded CV conditions like ischemic heart disease without myocardial infarction were allowed to enrol.
- Considering the demographics of prostate cancer and given prolonged ADT use may worsen existing co-morbid conditions, we conducted a post-hoc analysis to assess the efficacy and safety of APA+ADT vs PBO+ADT in patients with or without ≥ 1 risk factor or a history of CV or metabolic risk factors at baseline.
- Given polypharmacy and concern for potential drug-drug interactions on the efficacy and safety with ARPI's in
 patients with advanced prostate cancer⁴, an additional analysis was performed in patients who were receiving
 associated concomitant medications for CV and metabolic conditions or risk factors at baseline.

1. Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381:13-24

2. Chi KN, Chowdhury S, Bjartell A, et al. Apalutamide in patients withmetastatic castration-sensitive prostate cancer: final survival analysis of the randomized, double-blind, phase III TITAN study. J Clin Oncol. 2021;39:2294-2303. 3. Clinical Trial Registration number: NCT02489318

4. Appikkuttan S, Ko, G, Chunmay R, et al. Drug-drug interaction potential among patients with nonmetastatic castration-resistant prostate cancer (nmCRPC) treated with novel androgen receptor inhibitors. Expert Rev Anticancer Ther. 2024 May;24(5):325-333. doi: 10.1080/14737140.2024.2328778. Epub 2024 Mar 12.

Prostate Cancer

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

METHODS

- CV and metabolic risk factors were categorized using MeDRA terminology and included CV ischemia, CV failure, CV arrhythmia, diabetes, hyperlipidemia, HT and obesity.
- Use of associated concomitant medications (con meds) were identified at study entry.
- rPFS was assessed using the first interim analysis cutoff that was prespecified to be final (median f/u 22.7 mo).
- OS and other clinical end-points were assessed at the final analysis (median f/u 44 mo).
 - PBO arm included patients who crossed over to receive APA after the first I.A.
- The proportion of patients who achieved a decline in PSA level >90% (PSA90) or PSA nadir of <0.2ng/ml from baseline was assessed according to Prostate Cancer Working Group 2 (PCWG2) recommendations
- TEAEs, TEAE's of Special Interest and TEAE's associated with long term use of ADT were also analysed in patients across these three cohorts

$\langle \langle \rangle (\hat{\mathbf{n}}) \langle \rangle$
CONCLUSIONS
INTRODUCTION
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

Prostate Cancer

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

Demographics (Table 1 and Supplementary Table)

- In TITAN, 72% and 69% patients in the APA and PBO arms had a prior history of CV or metabolic risk factors
- Patient demographics were well matched across the APA and PBO arms
- The median age of patients with history of CV or metabolic risk factors was 3-4 years older than those without these risk factors in both APA and PBO arms. There was a higher percentage of patients aged over 75 in both APA and PBO arms.
- The median weight of patients with a history of CV or metabolic risk factors was 8kg higher than those without these risk factors in both APA and PBO arms.
- Approximately 95% of patients with prior CV or metabolic risk were also receiving one or more associated concomitant medications for these conditions.
- Common concomitant medications included:
 - Anti-hypertension medications in ~ 60%
 - Statins in ~30%, beta blockers in ~30%, channel calcium blockers in ~25%
 - Anti-thrombotic agents in ~20% including direct factor Xa inhibitors in ~5%

CONCLUSIONS
INTRODUCTION
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

Prostate Cancer

NAVIGATION

CONCLUSIONS

INTRODUCTION

Subject Demographics

Subject Demographics SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors

Radiographic Progression Free Survival

Radiographic Progression Free Survival

METHODS

RESULTS

TABLE 1

RESULTS PSA response FIGURE 1 PSA Response RESULTS

FIGURE 2

RESULTS Overall Survival FIGURE 3 Overall Survival RESULTS Subject Safety TABLE 2

Subject Safety

APPENDIX

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

	With history of C	CV/metabolic risk		V/metabolic risk n meds	No history of C	/ /metabolic risk	
	APA+ADT	PBO+ADT	APA+ADT	PBO+ADT	APA+ADT	PBO+ADT	
Sub-group prevalence n (% of ITT population)	378 (72)	364 (69)	358 (68)	347 (66)	146 (28)	163 (31)	
Median (Q1-Q3) Age in Years	69 (65-75)	70 (63-74)	69 (65-75)	70 (63-74)	66 (61-73)	66 (60-71)	
<65 n (%)	94 (25)	109 (30)	89 (25)	103 (30)	55 (37)	73 (45)	
>=75 n (%)	103 (27)	88 (24)	99 (27)	85 (24)	30 (20)	25 (15)	
Median Baseline Weight (Q1-Q3) in kg	79.1 (70-90)	80.3 (70-92)	80 (71-91)	81.2 (70-92)	72.8 (65-80)	70 (62-79)	
Patients receiving ACE inhibitors and angiotensin ii antagonists	226 (59.8)	210 (57.7)	226 (63.1))	209 (60.2)	12 (8.2)	14 (8.6)	
Patients receiving Statins n (%)	125 (33.1)	92 (25.3)	123 (34.4)	90 (25.9)	11 (7.5)	8 (4.9)	
Patients receiving direct factor Xa inhibitors n(%)	22 (5.8)	18 (4.9)	22 (6.1)	18 (5.2)	2 (1.4)	3 (1.8)	
Median Time from initial diagnosis to randomization in months (Q1-Q3)	4.29 (2.4-9.0)	4.04 (2.4-7.1)	4.4 (2.4 - 9.0)	4.07 (2.4-7.3)	3.78 (2.1-6.7)	3.94 (2.3 - 5.9)	
Gleason score at initial diagnosis			On the second se				
N	378	364	358	347	147	163	
<8	138 (37)	123 (34)	130 (36)	118 (34)	36 (24)	46 (28)	
≧8	240 (63)	241 (66)	228 (64)	229 (66)	111 (76)	117 (72)	
COG Performance Status n(%)							
0	240 (64)	230 (63)	227 (63)	219 (63)	88 (60)	118 (72)	
1	138 (37)	133 (37)	131 (37)	127 (37)	59 (40)	45 (28)	
Vetastasis stage at diagnosis		λ^{γ}					
n (%)	()-)	xe					
MO	73 (19)	49 (14)	73 (20)	48 (14)	12 (8)	10 (6)	
M1	287 (76)	294 (81)	269 (75)	278 (80)	124 (84)	147 (90)	
MX (a)	18 (5)	21 (6)	16 (5)	21 (6)	11 (8)	6 (4)	
/olume of disease n (%)	001 (50)	000 (00)	000 (50)	000 (00)	10.4 (71)	100 (05)	
High volume	221 (59)	229 (63)	206 (58)	220 (63)	104 (71)	106 (65)	
Low volume	157 (41)	135 (37)	152 (42)	127 (37)	43 (29)	57 (35)	
Vedian Baseline PSA ng/L Q1-Q3)	5.7 (1.2-22.9)	4.2 (0.9-28.7)	5.4 (1.1 - 21.9)	4.3 (1.1-27.0)	8.3 (1.1 - 51.1)	2.9 (0.7-23.3)	

Table 1: Patient Demographics were well matched - 70% of patients had history of CV and metabolic risk factors

Prostate Cancer

6

.3

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

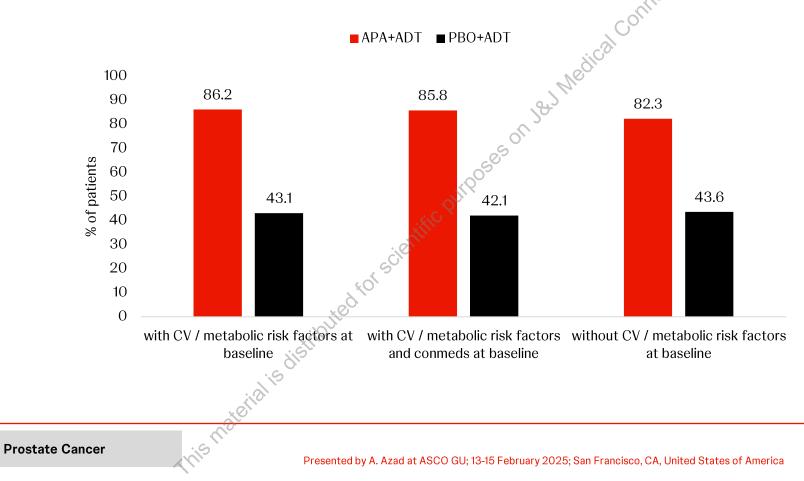
Supplementary Table		isnot		
Analysis of subjects with medical history of cardiovascular or metabolic risk factor	¢.			
	Apalutamide 🔿	Placebo		
Safety Population n	524	527	CONCLUSIONS	
Subjects with no medical history of CV or metabolic events n (%)	147 (27.9)	163 (30.9)	INTRODUCTION	
ubjects with a history of cardiac disorders, diabetes, hypertension, hyperchol/lipidaemia, stroke, PE, or TIA or	378 (72.1)	364 (69.1)	INTRODUCTION	
aseline obesity n (%)	dice		METHODS	
subjects with a history of cardiac disorders, diabetes, hypertension, hyperchol/lipidaemia, stroke, PE, or TIA or	358 (68.3)	347 (65.8)		
aseline obesity with concomitant medication for disease at baseline n (%)	⁺ 2.		RESULTS	
Subjects with a history of hypertension n (%)	299 (57.1)	275 (52.2)	RESULTS Subject Demographics	
Subjects with a history of hyperchol/lipidaemia n (%)	98 (18.7)	90 (17.1)	Subject Demographics	
Subjects with a history of diabetes n (%)	77 (14.7)	81 (15.4)	TABLE 1 Subject Demographics	
Subjects with a history of cardiac disorders n (%)	130 (24.8)	122 (23.1)	SUPPLEMENTARY TABLE	
Subjects with a history of CV ischaemic n (%)	81 (15.5)	91 (17.3)	Analysis of CV and metabolic risk factors	
Subjects with a history of CV failure n (%)	56 (10.7)	52 (9.9)	RESULTS	
Subjects with a history of CV arrhythmia n (%)	48 (9.2)	31 (5.9)	PSA response	
Subjects with a history of stroke, PE, or TIA n (%)	19 (3.6)	25 (4.7)	FIGURE 1 PSA Response	
lote: Percent is based on the Safety population; groups are not mutually exclusive			RESULTS	
lote. Percent is based on the Safety population, groups are not initially exclusive			Radiographic Progression Free Surv	
ubsequent Efficacy and safety analyses were performed on the following populations:			FIGURE 2 Radiographic Progression Free Surv	
Subjects with a history of cardiac disorders, diabetes, hypertension, hyperchol/lipidaemia, stroke, PE, or TIA or baseline obesity			RESULTS	
Subjects with a history of cardiac disorders, diabetes, hypertension, hyperchol/lipidaemia, stroke, PE, or TIA or baseline obesity with			Overall Survival	
concomitant medication for disease at baseline			FIGURE 3	
Subjects with no medical history of CV or metabolic events			Overall Survival	
			RESULTS	
			Subject Safety	
			- TABLE 2 Subject Safety	
Prostate Cancer				
Presented by A. Azad at ASCO GU; 13-15 February	2025; San Francisco, CA, United	States of America	APPENDIX	

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

PSA Response – PSA90 or PSA <0.2ng/ml by PCWG2 criteria

- Achievement of PSA90 or PSA<0.2ng/ml favoured the APA+ADT arm vs PBO+ADT in all 3 patient cohorts (Figure 1)
- Across all three cohorts, >80% of patients treated with APA+ADT achieved this threshold, approximately double the proportion of that treated with PBO +ADT
- Both the proportion and the magnitude of benefit of APA+ADT was similar regardless of prior history of CV or metabolic risk


CONCLUSIONS INTRODUCTION **METHODS** RESULTS RESULTS Subject Demographics TABLE 1 Subject Demographics SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors RESULTS **PSA Response FIGURE 1 PSA Response** RESULTS Radiographic Progression Free Survival FIGURE 2 Radiographic Progression Free Survival RESULTS **Overall Survival** FIGURE 3 **Overall Survival** RESULTS Subject Safety TABLE 2 Subject Safety APPENDIX

NAVIGATION

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

Figure 1: Percentage of patients achieving PSA90 or PSA<0.2ng/ml was similar in those with and without baseline CV or metabolic risk factors or conmeds and approximately double in the APA vs PBO group

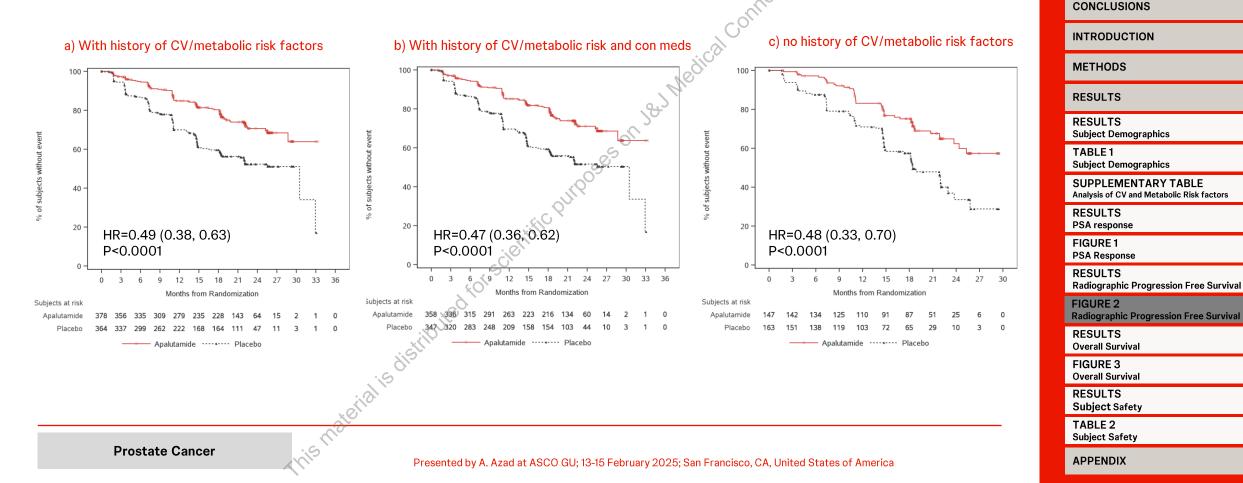
NAVIGATION CONCLUSIONS INTRODUCTION **METHODS** RESULTS RESULTS Subject Demographics TABLE 1 Subject Demographics SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors RESULTS PSA response **FIGURE 1** PSA Response RESULTS **Radiographic Progression Free Survival** FIGURE 2 **Radiographic Progression Free Survival** RESULTS **Overall Survival** FIGURE 3 **Overall Survival** RESULTS Subject Safety TABLE 2 Subject Safety **APPENDIX**

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

Radiographic Progression Free Survival

- Median rPFS was superior in favour of APA+ADT vs PBO +ADT regardless of prior history of CV or metabolic risk factors or use of associated concomitant medications (Figure 2)
- The magnitude of treatment effect of APA vs PBO was similar across all 3 patient cohorts:
 - Patients with prior history of CV or metabolic risk factors: HR (95% CI) 0.49 (0.38, 0.63) p<0.0001
 - Patients with prior history of CV or metabolic risk factors + concomitant medications: HR (95% CI)
 0.47 (0.36, 0.62) p<0.0001
 - Patients without prior history of CV or metabolic risk factors: HR (95% CI) 0.48 (0.33, 0.70) p 0.0001


NAVIGATION
CONCLUSIONS
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

NAVIGATION

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

Figure 2 – Treatment effect of APA on rPFS was similar in those with and without baseline CV or metabolic risk factors +/- concomitant medications

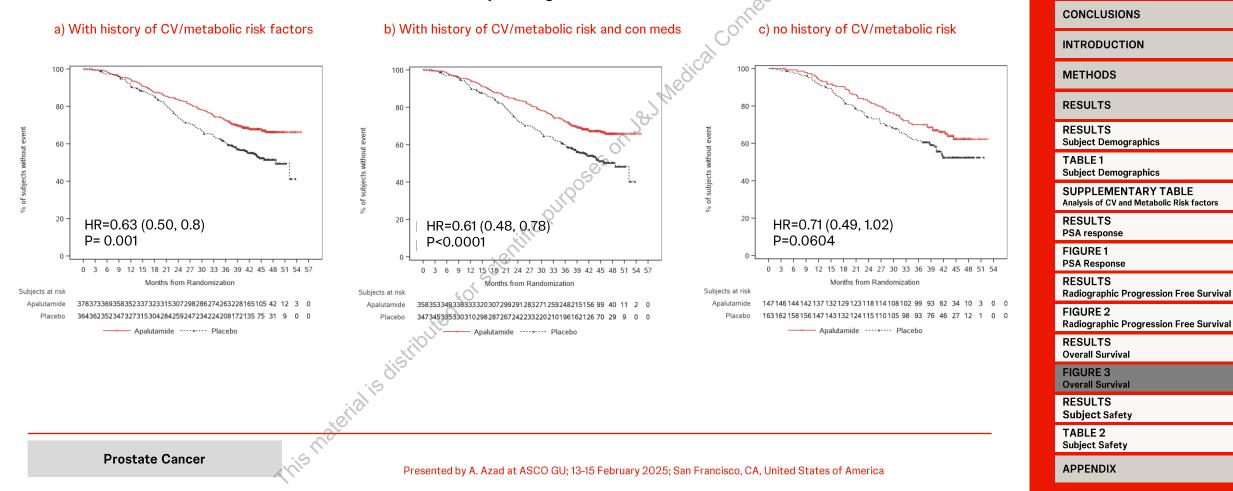
Presented by A. Azad at ASCO GU; 13-15 February 2025; San Francisco, CA, United States of America

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

Overall Survival

- Median Overall Survival was superior in favour of APA+ADT vs PBO +ADT regardless of prior history of CV or metabolic risk factors or use of associated concomitant medications; with curves separating within the first 12 months (Figure 3)
 - Patients with prior history of CV or metabolic risk factors: HR (95% CI) 0.63 (0.50, 0.80) p0.001
 - Patients with prior history of CV or metabolic risk factors + concomitant medications: HR (95% CI) 0.61 (0.48, 0.78) p<0.0001
 - Patients without prior history of CV or metabolic risk factors: HR (95% Cl) 0.71 (0.49, 1.02) p 0.0604


NAVIGATION
CONCLUSIONS
INTRODUCTION
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

NAVIGATION

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

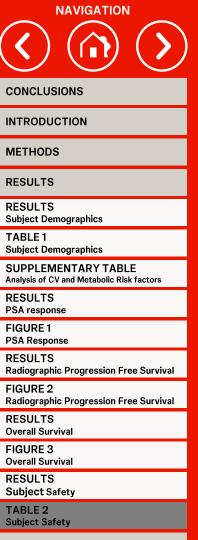
RESULTS

Figure 3 – Treatment effect of APA on Overall Survival was similar in those with and without baseline CV or metabolic risk factors +/- concomitant medications, with curves separating within the first 12 months

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

RESULTS

- Safety TEAEs were similar regardless of CV/metabolic risk. Rates of some TEAE of S.I or TEAE associated with LT ADT use were slightly higher in patients with a history of these risk factors in both the APA and PBO arms (Table 2)
- Incidence of TEAEs, ≧Gr 3 TEAEs and TEAEs leading to death were similar across all 3 cohorts and between both arms
- Incidence of falls, IHD and Ischemic CV disorders were infrequent, rates were slightly higher in those patients with history of CV and metabolic risk factors vs those without in both the APA and PBO arms:
 - Possibly due to the skewed older age of this cohort
- Similarly, TEAE's associated with long term use of ADT such as diabetes and cardiac AEs were also slightly
 higher in patients with history of these risk factors than those without in both the APA and PBO arms
- Cognitive deficits were infrequently observed across all groups
- The median treatment duration was 19.1 months longer in the APA arm vs the PBO arm. Reported incidence of TEAEs are not treatment exposure adjusted and should be interpreted accordingly


NAVIGATION
CONCLUSIONS
INTRODUCTION
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

Prostate Cancer

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

Table 2: Incidence of TEAEs were similar regardless of CV/metabolic risk. Rates of some TEAE of S.I or TEAE associated with LT ADT use were higher in patients with a history of these risk factors in both the APA and PBO arms. Cognitive deficits were infrequent.

	With history of CV / metabolic risk factors		With history CV/metabolic risk factors + associated con meds		without history of CV / metabolic ris factors	
	APA+ADT	PBO+ADT	APA+ADT	PBO+ADT	APA+ADT	PBO+ADT
	n (%)	n (%)	n (%)	n (%)	🕥 n (%)	n (%)
	378	364	358	347	146	163
Imber of subjects with TEAEs	368 (97.4)	353 (97.0)	350 (97.8)	337 (97.1)	142 (97.3)	157 (96.3)
umber of subjects with Grade 3-4 TEAEs	183 (48.4)	165 (45.3)	177 (49.4)	161 (46.4)	76 (52.1)	55 (33.7)
Imber of subjects with SAEs ^b	117 (31.0)	81 (22.3)	115 (32.1)	80 (23.1)	36 (24.7)	34 (20.9)
mber of subjects with TEAEs leading to treatment discontinuation	48 (12.7)	21 (5.8)	48 (13.4)	20 (5.8)	14 (9.6)	9 (5.5)
Imber of subjects with TEAEs leading to death	15 (4.0)	11 (3.0)	15 (4.2)	11 (3.2)	5 (3.4)	6 (3.7)
AE of Special Interest - by category n (%)	10 (1.0)	1 (0.0)	10 (112)		0 (0.1)	0 (0.1)
in Rash			1	(C)		
All grades	113 (29.9)	37 (10.2)	104 (29.1)	37 (10.7)	40 (27.4)	12 (7.4)
≧Gr 3	22 (5.8)	5 (1.4)	22 (6.1)	5 (1.4)	11 (7.5)	0
All grades	38 (10.1)	30 (8.2)	37 (10.2)	29 (8.4)	11 (7.5)	7 (4.3)
≧Gr 3	6 (1.6)	3 (0.8)	6 (1.7)	3 (0.9)	1 (0.7)	2 (1.2)
acture		- ()	G	- ()		
All grades	38 (10.1)	17 (4.7)	38 (10.6)	16 (4.6)	16 (11)	9 (5.5)
≧Gr 3	10 (2.6)	4 (1.1)	10 (2.8)	4 (1.2)	8 (5.5)	0
chemic Heart Disease			0	. (- ()	
All grades	26 (6.9)	10 (2.7)	25 (7.0)	5 (1.4)	5 (3.4)	1 (0.6)
≧Gr 3	14 (3.7)	4 (1.0)	14 (4.1)	4 (1.0)	2 (1.4)	0
chaemic cerebrovascular disorders			, <i>, ,</i>			
All grades	13 (3.4)	5 (1.4)	13 (3.6)	5 (1.4)	0	3 (1.8)
≧Gr 3	8 (2.1)	1(0.3)	8 (2.2)	1 (0.3)	0	0
izure	, , , , , , , , , , , , , , , , ,	. 01				
All grades	1 (0.3)	2 (0.5)	1 (0.3)	2 (0.5)	2 (1.4)	0
≧Gr 3	0	50	0	0	1 (0.7)	0
AEs associated with long-term use of ADT By Grouped terms n (%)						
abetes	100	·				
All grades	32 (8.5)	19 (5.2)	31 (8.7)	19 (5.5)	4 (2.7)	0
≧Gr 3	9 (2.4)	6 (1.6)	9 (2.5)	6 (1.7)	0	0
rhythmia & Cardiac Disorders						
All grades	23 (6.1)	15 (4.1)	22 (6.1)	15 (4.3)	7 (4.8)	2 (1.2)
≧Gr 3	9 (2.4)	6 (1.6)	8 (2.2)	6 (1.8)	4 (2.8)	0
irdiac Failure	Ales					
All grades	14 (3.7)	9 (2.5)	14 (3.9)	9 (2.6)	1 (0.7)	1 (0.6)
≧Gr̃ 3	8 (2.1)	3 (0.8)	8 (2.2)	3 (0.9)	0	0
gnitive Deficits						
All grades	13 (3.4)	6 (1.6)	13 (3.6)	6 (1.7)	3 (2.1)	4 (2.5)
≧Gr 3	1 (0.3)	0	1 (0.3)	0	1 (0.7)	0

Prostate Cancer

APPENDIX

Arun Azad, Ding-Wei Ye, Hiroji Uemura, Amitabha Bhaumik, Michael Eisbacher, Anildeep Singh, Sharon McCarthy, Suneel Mundle, Kim N. Chi, Neeraj Agarwal

APPENDIX

REFERENCES:

1. Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381:13-24

2. Chi KN, Chowdhury S, Bjartell A, et al. Apalutamide in patients withmetastatic castration-sensitive prostate cancer: final survival analysis of the randomized, double-blind, phase III TITAN study. J Clin Oncol. 2021;39:2294-2303.

3. Clinical Trial Registration number: NCT02489318

4. Appikkuttan S, Ko, G, Chunmay R, et al. Drug-drug interaction potential among patients with nonmetastatic castration-resistant prostate cancer (nmCRPC) treated with novel androgen receptor inhibitors. Expert Rev Anticancer Ther. 2024 May;24(5):325-333. doi: 10.1080/14737140.2024.2328778. Epub 2024 Mar 12.

DISCLOSURES:

Prof A Azad is an employee of the PeterMacCallum Cancer Centre, Melbourne Australia Prof D-W Ye is an employee of Fudan University Shanghai Cancer Center, Shanghai, China; Prof H Uemura is an employee of Yokohama City University Medical Center, Kanagawa, Japan; A Bhaumik, M. Eisbacher, A Singh, S McCarthy and S Mundle are employees of Johnson & Johnson Prof K. Chi is an employee of University of British Columbia, BC Cancer-Vancouver Center, Vancouver, BC; Prof N Agarwal is an employee of Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT

Other relevant disclosures relevant to this abstract can be found on the ASCO website: https://meetings.asco.org/abstracts-presentations/242386

CONCLUSIONS
INTRODUCTION
METHODS
RESULTS
RESULTS Subject Demographics
TABLE 1 Subject Demographics
SUPPLEMENTARY TABLE Analysis of CV and Metabolic Risk factors
RESULTS PSA response
FIGURE 1 PSA Response
RESULTS Radiographic Progression Free Survival
FIGURE 2 Radiographic Progression Free Survival
RESULTS Overall Survival
FIGURE 3 Overall Survival
RESULTS Subject Safety
TABLE 2 Subject Safety
APPENDIX

Prostate Cancer